极品美女销魂一区二区三区,日韩午夜精品免费观看,骚妇内,久久久久久熟女熟妇

邁德施-專注于氨氮檢測儀生產(chǎn)、銷售 專注于氨氮檢測儀生產(chǎn) • 銷售
智慧感知世界 • 科技成就未來


污水處理:你所不知道的 TP(總磷)!

時間:2022-04-18 10:46:46   訪客:753

磷是一種活潑元素,在自然界中不以游離狀態(tài)存在,而是以含磷有機物、無機磷化合物及還原態(tài)PH3這三種狀態(tài)存在。污水中含磷化合物可分為有機磷與無機磷兩類。

無機磷幾乎都以各種磷酸鹽形式存在,包括正磷酸鹽、偏磷酸鹽、磷酸氫鹽、磷酸二氫鹽,以及聚合磷酸鹽如焦磷酸鹽、三磷酸鹽等。有機磷大多是有機磷農(nóng)藥,如樂果、甲基對硫磷、乙基對硫磷、馬拉硫磷等構成,他們大多呈膠體和顆粒狀,不溶于水,易溶于有機溶劑??扇苄杂袡C磷只占30%左右,多以葡萄糖-6-磷酸、2-磷酸-甘油酸及磷肌酸等形式存在。溶解磷占總磷的1/3 左右,PO4ˉ-P磷中大分子磷占40%。有機磷的去除必須轉化成磷酸鹽才能去除,本文的除磷介紹,只介紹磷酸鹽的去除!

1、磷是怎樣轉化?影響因素有哪些?

水體中的可溶性磷很容易與Ca2+、Fe3+ 、Al3+ 等離子生成難溶性沉淀物,例如AIPO4、FePO4等,沉積于水體底部成為底泥。聚積于底泥中的磷的存在形式和數(shù)量,一方面決定于污染物輸入和通過地表與地下徑流的排出情況;另一方面決定于水中的磷與底泥中的磷之間的交換情況。沉積物中的磷通過顆粒態(tài)磷的懸浮和水流的湍流擴散再度被稀釋到上層水體中,或者當沉積物中的可溶性磷大大超過水體中磷的濃度時,則可能重新釋放到水體中。

在水中,磷離子以HPO42ˉ還是以H2PO4ˉ形式存在取決于pH值,當pH值在2~7時,水中磷酸鹽離子多數(shù)以H2PO4ˉ形式存在,而pH值在7~12時,則水中的磷酸鹽離子多數(shù)以HPO42ˉ形式存在。所有含磷化合物都是首先轉化為正磷酸鹽(PO43ˉ) 后,再轉化為其他形式。此時測定PO的含量,測定結果即是總磷的含量。

2、磷的來源是什么?

污水中的磷部分來源于化肥和農(nóng)業(yè)廢棄物。同時,生活中含磷洗滌劑的大量使用也使生活污水中磷的含量顯著增加。此外,化工、造紙、橡膠、染料和紡織印染、農(nóng)藥、焦化、石油化工、發(fā)酵、醫(yī)藥與醫(yī)療及食品等行業(yè)排放的廢水常含有有機磷化合物。

3、磷的危害是什么?

0.1、磷對人體的危害

高磷洗衣粉對皮膚有直接刺激作用,嚴重的會導致接觸性皮膚炎、嬰兒尿布疹等疾病。同時磷會對神經(jīng)中樞造成危害,特別是一部分有機磷農(nóng)藥的生物降解性差,易在環(huán)境中殘留,對人、畜等脊椎動物具有相當高的毒性,會抑制膽堿酯酶的作用,影響神經(jīng)系統(tǒng)功能,引起中毒甚至死亡。

0.2、磷對海洋生物的危害

目前國內(nèi)外廣泛使用的有機磷農(nóng)藥對海洋生物危害大,有機磷能夠對蝦體內(nèi)的潛伏病原體。魚、蝦等死亡事件層出不窮,已經(jīng)對海水養(yǎng)殖業(yè)形成威脅。

0.3、磷對土壤的污染

磷對土壤的污染主要來源于過量使用農(nóng)藥、化肥及污水灌溉。過量的磷會超過土壤的自凈能力,使土壤發(fā)生不良變化,導致土壤自然正常功能失調(diào)。

更嚴重的會導致毒化空氣和水質(zhì),通過植物吸收,降低農(nóng)副產(chǎn)品生物學質(zhì)量,造成殘毒通過植物鏈傳遞終危害人類生命和健康。

0.4、過量的磷對水體有較大危害,造成水體富營養(yǎng)化

對于引發(fā)水體富營養(yǎng)化而言,磷的作用遠大于氮的作用,水體中磷的濃度不是很高時就可以引起水體富營養(yǎng)化。

0.5、化學除磷的概念和工藝

化學除磷是通過化學沉淀過程完成的,化學沉淀是指通過向污水中投加藥劑,其與污水中溶解性的鹽類,如磷酸鹽混合后,形成顆粒狀、非溶解性的物質(zhì),污水中進行的不僅僅是沉淀反應,同時還進行著化學絮凝反應。采用的藥劑一般有鋁鹽、鐵鹽(亞鐵鹽)、石灰、鐵鋁聚合物。

化學沉淀工藝是按沉淀藥劑的投加位置來區(qū)分的,實際中常采用的有:前沉淀、同步沉淀和后沉淀。

(1)前沉淀

在沉淀池前投加金屬沉淀劑到原水中。其一般需要設置產(chǎn)生渦流的裝置或者供給能量以滿足混合的需要。相應產(chǎn)生的沉淀產(chǎn)物(大塊狀的絮凝體)則在一次沉淀池中通過沉淀而被分離。如果生物段采用的是生物濾池,則不允許使用Fe2+藥劑,以防止對填料產(chǎn)生危害(產(chǎn)生黃銹)。

前沉淀工藝特別適合于現(xiàn)有污水處理廠的改建(增加化學除磷措施),因為通過這一工藝步驟不僅可以去除磷, 而且可以減少生物處理設施的負荷。常用的沉淀藥劑主要是生灰和金屬鹽藥劑。經(jīng)前沉淀后剩余磷酸鹽的含量為1.5~2.5mg/L,完全能滿足后續(xù)生物處理對磷的需要。

(2)同步沉淀

在生物處理過程中投加金屬沉淀劑。同步沉淀是使用廣泛的化學除磷工藝,其工藝是將沉淀藥劑投加在曝氣池出水或二次沉淀池進水中,個別情況也有將藥劑投加在曝氣池進水或回流污泥渠(管)中。目前很多污水廠都采用同步沉淀,加藥對活性污泥的影響比較小。

(3)后沉淀

將沉淀、絮凝以及被絮凝物質(zhì)的分離在一個與生物設施相分離的設施中進行,向出水中投加金屬沉淀劑,一般將沉淀藥劑投加到二次沉淀池后的一個混合池中,之后混合沉淀。并在其后設置絮凝池和沉淀池(或氣浮池)。

對于要求不嚴的受納水體,在后沉淀工藝中可采用石灰乳液藥劑,但必須對出水pH值加以控制,比如采用沼氣中的CO2進行中和。采用氣浮池可以比沉淀池更好地去除懸浮物和總磷,但因為需恒定供應空氣而運轉費用較高。

4、生物除磷的原理及影響因素

廢水中磷的存在形態(tài)取決于廢水的類型,常見的是磷酸鹽、聚磷酸鹽和有機磷。生活廢水的含磷量一般在10~15mg/L左右,其中70%是可溶性的。常規(guī)二級生物處理的出水中90%左右的磷以磷酸鹽的形式存在。在傳統(tǒng)的活性污泥法中,磷作為微生物正常生長所必需的元素用于微生物菌體的合成,并以生物污泥的形式排出,從而引起磷的去除,能夠獲得10%~30%的除磷效果。在某些情況下,微生物吸收的磷量超過了微生物正常生長所需要的磷量,這就是活性污泥的生物超量除磷現(xiàn)象,廢水生物除磷技術正是利用生物超量除磷的原理而發(fā)展起來的。

1)生物除磷的原理:

根據(jù)霍爾米(Holmers) 提出的化學式,活性污泥的組成是C118 H170O51N17P,由此可知,C: N: P=46 : 8: 1。如果廢水中N、P的含量低于此值,則需另行從外部投加;如等于此值,則在理論上應當是能夠全部攝取而加以去除的。

生物除磷的基本原理是利用一種被稱為聚磷菌(也稱為除磷菌、磷等)的在厭氧條件下能充分釋放其細胞體內(nèi)的聚合磷酸鹽(該過程稱為厭氧釋磷);而在好氧條件下又能超過其生理需要從水中吸收磷 (該過程稱為好氧吸磷),并將其轉化為細胞體內(nèi)的聚合磷酸鹽,從而形成富含磷的生物污泥,通過沉淀從系統(tǒng)中排出這種富磷污泥,達到從廢水中除磷的效果。聚磷菌的作用機理如圖所示。

①在厭氧區(qū)內(nèi)的釋磷過程,在沒有溶解氧和硝態(tài)氮存在的厭氧條件下,兼性通過發(fā)酵作用將溶解性BOD轉化為揮發(fā)性有機酸 (VFA), 聚磷菌吸收VFA并進入細胞內(nèi),同化合成為胞內(nèi)碳源的儲存物——聚-β-羥基丁酸鹽(PHB),所需的能量來源于聚磷菌將其細胞內(nèi)的有機態(tài)磷轉化為無機態(tài)磷的反應,并導致磷酸鹽的釋放。

②在好氧區(qū)內(nèi)的吸磷過程,聚磷菌的活力得到恢復并以聚磷的形態(tài)儲存超出生長需要的磷量,通過對PHB的氧化代謝產(chǎn)生能量用于磷的吸收和聚磷的合成,能量以聚磷酸高能鍵的形式儲存起來,磷酸鹽從液相去除。產(chǎn)生的高磷污泥通過剩余污泥的形式得到排放,從而將磷從系統(tǒng)中去除。

由上可知,聚磷菌在厭氧狀態(tài)下釋放磷獲取能量以吸收廢水中溶解性有機物,在好氧狀態(tài)下降解吸收的溶解性有機物獲取能量以吸收磷,在整個生物除磷過程中表現(xiàn)為PHB的合成與分解。三磷酸腺苷(ATP)則作為能量的傳遞者。PHB的合成與分解作為一種能量的儲存和釋放過程,在聚磷菌的攝磷和放磷過程中起著十分重要的作用,即聚磷菌對PHB合成能力的大小將直接影響其攝磷能力的高低。正是因為聚磷菌在厭氧好氧交替運行的系統(tǒng)中有釋磷和攝磷的作用,才使得它在與其他微生物的競爭中取得優(yōu)勢,從而使除磷作用向正反應的方向進行。

聚磷菌在厭氧條件下能夠將其體內(nèi)儲存的聚磷酸鹽分解,以提供能量攝取廢水中的溶解性有機基質(zhì),合成并儲存PHB,這樣使得其在與其他微生物的競爭中,其他微生物可利用的基質(zhì)減少,從而不能很好地生長。在好氧階段,由于聚磷菌的過量攝磷作用,使得活性污泥中的其他微生物得不到足夠的有機基質(zhì)及磷酸鹽,也使聚磷菌在與其他微生物的競爭中獲得優(yōu)勢。

2)生物除磷的影響因素:

(1)溶解氧

溶解氧的影響包括兩個方面。首先必須在厭氧區(qū)中控制嚴格的厭氧條件,這直接關系到聚磷菌的生長狀況、釋磷能力及利用有機基質(zhì)合成PHB的能力。由于DO的存在,一方面DO將作為終電子受體而抑制的發(fā)酵產(chǎn)酸作用,妨礙磷的釋放;另一方面會耗盡能快速降解的有機基質(zhì),從而減少聚磷菌所需的脂肪酸產(chǎn)生量,造成生物除磷效果差。其次是在好氧區(qū)中要供給足夠的溶解氧,以滿足聚磷菌對其儲存的PHB進行降解,釋放足夠的能量供其過量攝磷之需,有效地吸收廢水中的磷。一般厭氧段的DO應嚴格控制在0.2mg/L以下,而好氧段的溶解氧控制在2.0mg/L左右。

(2)厭氧區(qū)硝態(tài)氮

硝態(tài)氮包括硝酸鹽氮和亞硝酸鹽氮,其存在同樣也會消耗有機基質(zhì)而抑制聚磷菌對磷的釋放,從而影響在好氧條件下聚磷菌對磷的吸收。另一方面,硝態(tài)氮的存在會被部分生物聚磷菌(氣單胞菌)利用作為電子受體進行反硝化,從而影響其以發(fā)酵中間產(chǎn)物作為電子受體進行發(fā)酵產(chǎn)酸,從而抑制了聚磷菌的釋磷和攝磷能力及PHB的合成能力。

(3)溫度

溫度對除磷效果的影響不如對生物脫氮過程的影響那么明顯,因為在高溫、中溫、低溫條件下,不同的菌群都具有生物脫磷的能力,但低溫運行時厭氧區(qū)的停留時間要更長一些,以保證發(fā)酵作用的完成及基質(zhì)的吸收。在5~30°C的范圍內(nèi),都可以得到很好的除磷效果。

(4) pH值

pH值在6~8的范圍內(nèi)時,磷的厭氧釋放過程比較穩(wěn)定。pH值低于6.5時生物除磷的效果會大大降低。

(5)BOD負荷和有機物性質(zhì)

廢水生物除磷工藝中,厭氧段有機基質(zhì)的種類、含量及其與微生物營養(yǎng)物質(zhì)的比值(BOD5/TP)是影響除磷效果的重要因素。不同的有機物為基質(zhì)時,磷的厭氧釋放和好氧攝取是不同的。根據(jù)生物除磷原理,相對分子質(zhì)量較小的易降解的有機物(如低級脂肪酸類物質(zhì))易于被聚磷菌利用,將其體內(nèi)儲存的多聚磷酸鹽分解釋放出磷,誘導磷釋放的能力較強,而高分子難降解的有機物誘導釋磷的能力較弱。厭氧階段磷的釋放越充分,好氧階段磷的攝取量就越大。

另一方面,聚磷菌在厭氧段釋放磷所產(chǎn)生的能量,主要用于其吸收進水中低分子有機基質(zhì)合成PHB儲存在體內(nèi), 以作為其在厭氧條件壓抑環(huán)境下生存的基礎。因此,進水中是否含有足夠的有機基質(zhì)提供給聚磷菌合成PHB,是關系到聚磷菌在厭氧條件下能否順利生存的重要因素。一般認為,進水中BOD5/TP要大于15才能保證聚磷菌有足夠的基質(zhì)需求而獲得良好的除磷效果。為此,有時可以采用部分進水和省去初次沉淀池的方法來獲得除磷所需的BOD負荷。

(6)污泥齡

由于生物脫磷系統(tǒng)主要是通過排除剩余污泥去除磷的,因此剩余污泥量的多少將決定系統(tǒng)的除磷效果。而污泥齡的長短對污泥的攝磷作用及剩余污泥的排放量有著直接的影響。一般來說,污泥齡越短,污泥含磷量越高,排放的剩余污泥量就越多,越可以取得較好的脫磷效果。短的污泥齡還有利于好氧段控制硝化作用的發(fā)生而利于厭氧段充分釋磷,因此,僅以除磷為目的的污水處理系統(tǒng)中,一般宜采用較短的污泥齡。但過短的污泥齡不僅會影響出水的BOD5和COD,甚至會使出水的BOD5和COD達不到要求。

以除磷為目的的生物處理工藝,污泥齡一般控制在3.5~7d。一般來說,厭氧區(qū)的停留時間越長,除磷效果越好。但過長的停留時間并不會太多地提高除磷效果,而且會有利于絲狀菌的生長,使污泥的沉淀性能惡化,因此厭氧段的停留時間不宜過長。剩余污泥的處理方法也會對系統(tǒng)的除磷效果產(chǎn)生影響,因為污泥濃縮池中呈厭氧狀態(tài)會造成聚磷菌的釋磷,使?jié)饪s池上清液和污泥脫水液中含有高濃度的磷,因此有必要采取合適的污泥處理方法,避免磷的重新釋放。

5、常見生物除磷工藝

廢水生物除磷工藝一般由兩個過程組成,即厭氧釋磷和好氧攝磷兩個過程。目前應用的生物除磷工藝主要有在生物除磷基本原理基礎上發(fā)展起來的弗斯特利普(Phostrip)除磷工藝、厭氧-好氧(An/O) 工藝等除磷工藝。

1)弗斯特利普除磷工藝:

弗斯特利普(Phostrip) 除磷工藝是將生物除磷與化學除磷相結合的一種工藝,即在傳統(tǒng)活性污泥過程的污泥回流管線上增設厭氧釋磷池和混合反應池,采用生物和化學相結合的方法提高除磷效果。該工藝以生物除磷為主體,以化學除磷輔助去除厭氧釋磷后的上清液中的磷酸鹽,可以保證釋磷后的污泥主要用于對進水中的磷酸鹽進行吸收,因此可以達到更高的除磷效果。其工藝流程如圖所示。

該工藝各設備單元的功能:

①含磷廢水進入曝氣池,同步進入曝氣池的還有由除磷池回流的脫磷但含有聚磷菌的污泥。曝氣池的功能是:使聚磷菌過量地攝取磷,去除有機物(BOD 或COD),還可能出現(xiàn)硝化作用。

②從曝氣池流出的混合液(污泥含磷,廢水已經(jīng)除磷)進人沉淀池I,在這里進行泥水分離,含磷污泥沉淀,已除磷的上清液作為處理水而排放。

③含磷污泥進入除磷池,除磷池應保持厭氧狀態(tài),即DO≈0,NOㄨˉ≈0,含磷污泥在這里釋放磷,并投加沖洗水,使磷充分釋放,已釋放磷的污泥沉于池底,并回流至曝氣池,再次用于吸收廢水中的磷。含磷上清液從上部流出進入混合池。

④含磷上清液進入混合池,同步向混合池投加石灰乳,經(jīng)混合后進人攪拌反應池,使磷與石灰反應,形成磷酸鈣[Ca3 (PO4)2]固體物質(zhì)。此系用化學法除磷。

⑤沉淀池Ⅱ為混凝沉淀池,經(jīng)過混凝反應形成的磷酸鈣固體物質(zhì)在這里與上清液分離。已除磷的上清液回流進人曝氣池,而含有大量Ca3(PO4)2的污泥排出,這種含有高濃度PO3-的污泥宜用作肥料。

弗斯特利普除磷工藝已有很多應用實例。其主要特征有:

①生物除磷與化學除磷相結合,除磷效果良好,處理水中含磷量一般都低于1mg/L。

②產(chǎn)生的剩余污泥中含磷量比較高,約為2.1%~7.1%,污泥回流應經(jīng)過除磷池。

③與完全的化學除磷法相比,所需的石灰用量比較低,一般介于21~31.8mg/[Ca(OH)2·m3]。

④活性污泥的SVI值<100mL/g,污泥易于沉淀、濃縮、脫水,污泥肥分高,絲狀菌難于增殖,污泥不膨脹,且易于濃縮脫水。

⑤可以根據(jù)BOD/P的比值來靈活調(diào)節(jié)回流污泥與混凝污泥的比例。

⑥流程復雜,運行管理比較復雜,由于投加石灰乳,致使運行費用也有所提高,基建費用高。

⑦沉淀池I的底部可能形成缺氧狀態(tài)而產(chǎn)生釋放磷的現(xiàn)象,因此,應當及時排泥和回流。

2)厭氧-好氧活性污泥除磷工藝

厭氧-好氧活性污泥組合工藝( anaerobic/oxic,An/O)是直接在生物除磷基本原理的基礎上設計出來的,其工藝流程如圖所示。

前段為厭氧池,城市污水和回流污泥進入該池,并借助水下推進式攪拌器的作用使其混合?;亓魑勰嘀械木哿姿嵩趨捬醭乜晌杖コ徊糠钟袡C物,同時釋放出大量磷。然后混合液流人后段好氧池,污水中的有機物在其中得到氧化分解,同時聚磷菌將變本加厲,超量地攝取污水中的磷,然后通過排放高磷剩余污泥而使污水中的磷得到去除。好氧池在良好的運行狀況下,剩余污泥中磷的含量在2.5%以上。

A/O生物除磷工藝的主要特點:

①工藝流程簡單。

②厭氧池在前、好氧池在后,有利于抑制絲狀菌的生長。混合液的SVI小于100,污泥易沉淀,不易發(fā)生污泥膨脹,并能減輕好氧池的有機負荷。

③在反應池內(nèi),水力停留時間較短,一般厭氧池的水力停留時間為1~2h,好氧池的水力停留時間為2~4h,總共為3~6h。厭氧池/好氧池的水力停留時間之比一般為1 : (2~3)。

④剩余活性污泥含磷率高,一般為2.5%以上,故污泥肥效好。

⑤除磷率難以進一步提高。當污水BOD濃度不高或含磷量高時,則P/BOD5比值高,剩余污泥產(chǎn)量低,使除磷率難以提高。

⑥當污泥在沉淀池內(nèi)停留時間較長時,則聚磷菌會在厭氧狀態(tài)下產(chǎn)生磷的釋放,從而降低該工藝的除磷率,所以應注意及時排泥和使污泥回流。

A/O生物除磷工藝的缺點:

①除磷率難以進一步提高,因為微生物對磷的吸收即便是過量吸收,也是有一定限度的,特別是當進水BOD值不高或廢水中含磷量較高,即P/BOD值高時,由于污泥的產(chǎn)量低,將更是如此。

②在沉淀池內(nèi)容易產(chǎn)生磷的釋放,特別是當污泥在沉淀池內(nèi)停留時間較長時更是如此,應注意及時排泥和回流。


本文連接: http:///newss-828.html
上一條: 總磷在線監(jiān)測儀的特點優(yōu)勢 下一條: 解析總磷的檢測方法和注意事項

熱門資訊

 
  • 氨氮以N計是什么意思?
  • 測定總氮的注意事項和解決方法
  • 試劑的有效期該怎么確定
  • COD檢測值與BOD檢測值換算公式
  • 總磷試劑的配制流程和注意事項
  • 氨氮在污水中的濃度大概多少
  • 水質(zhì)檢測氨氮值多少為正常
  • 檢測氨氮的意義
  • 氨氮測量結果不穩(wěn)定原因
  • 污水中氨氮和總氮的關系
  •  

     

    ?
    新聞動態(tài)
    公司介紹 聯(lián)系我們

    掃描二維碼
    客服熱線
    181-5666-5555

    Email:1797916033@qq.com
    地址:安徽省池州市貴池區(qū)長江南路390號商會大廈15樓

    主營產(chǎn)品:氨氮檢測儀 總氮測定儀 總磷測定儀
    All rights reserved ? Copyright 2022 安徽邁德施環(huán)保科技有限公司 版權所有 備案號:皖ICP備2021018487號-7 本公司網(wǎng)站如有素材圖片涉及版權,請聯(lián)系我們立即修改!
    亚洲欧美 中文激情| 夜夜躁狠狠躁2021| 激情内射高潮在线观看| 久久亚洲欧美天堂| 夜夜添日日射| 午夜黄色AⅤ| 亚洲日本99| 老太太草在线| 免费h| 亚洲无码无线| 中文字幕日本人妻久久久免费| 禁漫网站进入网站| 一级黄片视频在收看| 香蕉在线| 国产精品国产三级国AV麻豆| 国产精品久久一区性色AⅤ| 爱干在线| 日韩av一二三区| AV3区| 狠狠狠狠狠狠2019新版免费| 亚洲综合无码一区二区三区不卡 | 久久伊人青草| 日韩人妻精品中文字幕| 性高朝久久久久久久久久| 精品久久神马| AV在线精品无码| 水蜜桃汁2| 超碰超碰| 在线观看黄色AV| 嫩草精品| 国产夫妻情侣自拍亚洲一区| 97视频蜜臀| 亚洲AV无码人妻一区| 久久久婷婷五月亚洲国产精品| 色窝窝网站| 亚洲日韩AV无码一区二区三区| 免费人妻视频网站| 日韩,嘿嘿,成人网站| 99久久婷婷国产综合精品| 国产成在线观看免费视频成本人 | 秋霞一区二区|